onetun/src/tunnel/udp.rs

281 lines
10 KiB
Rust

use std::collections::{BTreeMap, HashMap, VecDeque};
use std::net::{IpAddr, SocketAddr};
use std::ops::Range;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::time::Instant;
use anyhow::Context;
use priority_queue::double_priority_queue::DoublePriorityQueue;
use priority_queue::priority_queue::PriorityQueue;
use rand::seq::SliceRandom;
use rand::thread_rng;
use tokio::net::UdpSocket;
use crate::config::{PortForwardConfig, PortProtocol};
use crate::virtual_iface::udp::UdpVirtualInterface;
use crate::virtual_iface::{VirtualInterfacePoll, VirtualPort};
use crate::wg::WireGuardTunnel;
const MAX_PACKET: usize = 65536;
const MIN_PORT: u16 = 1000;
const MAX_PORT: u16 = 60999;
const PORT_RANGE: Range<u16> = MIN_PORT..MAX_PORT;
/// How long to keep the UDP peer address assigned to its virtual specified port, in seconds.
/// TODO: Make this configurable by the CLI
const UDP_TIMEOUT_SECONDS: u64 = 60;
/// To prevent port-flooding, we set a limit on the amount of open ports per IP address.
/// TODO: Make this configurable by the CLI
const PORTS_PER_IP: usize = 100;
pub async fn udp_proxy_server(
port_forward: PortForwardConfig,
port_pool: UdpPortPool,
wg: Arc<WireGuardTunnel>,
) -> anyhow::Result<()> {
// Abort signal
let abort = Arc::new(AtomicBool::new(false));
// data_to_real_client_(tx/rx): This task reads the data from this mpsc channel to send back
// to the real client.
let (data_to_real_client_tx, mut data_to_real_client_rx) =
tokio::sync::mpsc::channel::<(VirtualPort, Vec<u8>)>(1_000);
// data_to_real_server_(tx/rx): This task sends the data received from the real client to the
// virtual interface (virtual server socket).
let (data_to_virtual_server_tx, data_to_virtual_server_rx) =
tokio::sync::mpsc::channel::<(VirtualPort, Vec<u8>)>(1_000);
{
// Spawn virtual interface
// Note: contrary to TCP, there is only one UDP virtual interface
let virtual_interface = UdpVirtualInterface::new(
port_forward,
wg,
data_to_real_client_tx,
data_to_virtual_server_rx,
);
let abort = abort.clone();
tokio::spawn(async move {
virtual_interface.poll_loop().await.unwrap_or_else(|e| {
error!("Virtual interface poll loop failed unexpectedly: {}", e);
abort.store(true, Ordering::Relaxed);
});
});
}
let socket = UdpSocket::bind(port_forward.source)
.await
.with_context(|| "Failed to bind on UDP proxy address")?;
let mut buffer = [0u8; MAX_PACKET];
loop {
if abort.load(Ordering::Relaxed) {
break;
}
tokio::select! {
to_send_result = next_udp_datagram(&socket, &mut buffer, port_pool.clone()) => {
match to_send_result {
Ok(Some((port, data))) => {
data_to_virtual_server_tx.send((port, data)).await.unwrap_or_else(|e| {
error!(
"Failed to dispatch data to UDP virtual interface: {:?}",
e
);
});
}
Ok(None) => {
continue;
}
Err(e) => {
error!(
"Failed to read from client UDP socket: {:?}",
e
);
break;
}
}
}
data_recv_result = data_to_real_client_rx.recv() => {
if let Some((port, data)) = data_recv_result {
if let Some(peer_addr) = port_pool.get_peer_addr(port.0).await {
if let Err(e) = socket.send_to(&data, peer_addr).await {
error!(
"[{}] Failed to send UDP datagram to real client ({}): {:?}",
port,
peer_addr,
e,
);
}
port_pool.update_last_transmit(port.0).await;
}
}
}
}
}
Ok(())
}
async fn next_udp_datagram(
socket: &UdpSocket,
buffer: &mut [u8],
port_pool: UdpPortPool,
) -> anyhow::Result<Option<(VirtualPort, Vec<u8>)>> {
let (size, peer_addr) = socket
.recv_from(buffer)
.await
.with_context(|| "Failed to accept incoming UDP datagram")?;
// Assign a 'virtual port': this is a unique port number used to route IP packets
// received from the WireGuard tunnel. It is the port number that the virtual client will
// listen on.
let port = match port_pool.next(peer_addr).await {
Ok(port) => port,
Err(e) => {
error!(
"Failed to assign virtual port number for UDP datagram from [{}]: {:?}",
peer_addr, e
);
return Ok(None);
}
};
let port = VirtualPort(port, PortProtocol::Udp);
debug!(
"[{}] Received datagram of {} bytes from {}",
port, size, peer_addr
);
port_pool.update_last_transmit(port.0).await;
let data = buffer[..size].to_vec();
Ok(Some((port, data)))
}
/// A pool of virtual ports available for TCP connections.
#[derive(Clone)]
pub struct UdpPortPool {
inner: Arc<tokio::sync::RwLock<UdpPortPoolInner>>,
}
impl Default for UdpPortPool {
fn default() -> Self {
Self::new()
}
}
impl UdpPortPool {
/// Initializes a new pool of virtual ports.
pub fn new() -> Self {
let mut inner = UdpPortPoolInner::default();
let mut ports: Vec<u16> = PORT_RANGE.collect();
ports.shuffle(&mut thread_rng());
ports
.into_iter()
.for_each(|p| inner.queue.push_back(p) as ());
Self {
inner: Arc::new(tokio::sync::RwLock::new(inner)),
}
}
/// Requests a free port from the pool. An error is returned if none is available (exhausted max capacity).
pub async fn next(&self, peer_addr: SocketAddr) -> anyhow::Result<u16> {
// A port found to be reused. This is outside of the block because the read lock cannot be upgraded to a write lock.
let mut port_reuse: Option<u16> = None;
{
let inner = self.inner.read().await;
if let Some(port) = inner.port_by_peer_addr.get(&peer_addr) {
return Ok(*port);
}
// Count how many ports are being used by the peer IP
let peer_ip = peer_addr.ip();
let peer_port_count = inner
.peer_port_usage
.get(&peer_ip)
.map(|v| v.len())
.unwrap_or_default();
if peer_port_count >= PORTS_PER_IP {
// Return least recently used port in this IP's pool
port_reuse = Some(
*(inner
.peer_port_usage
.get(&peer_ip)
.unwrap()
.peek_min()
.unwrap()
.0),
);
warn!(
"Peer [{}] is re-using active virtual port {} due to self-exhaustion.",
peer_addr,
port_reuse.unwrap()
);
}
}
let mut inner = self.inner.write().await;
let port = port_reuse
.or_else(|| inner.queue.pop_front())
.or_else(|| {
// If there is no port to reuse, and the port pool is exhausted, take the last recently used port overall,
// as long as the last transmission exceeds the deadline
let last: (&u16, &Instant) = inner.port_usage.peek_min().unwrap();
if Instant::now().duration_since(*last.1).as_secs() > UDP_TIMEOUT_SECONDS {
warn!(
"Peer [{}] is re-using inactive virtual port {} due to global exhaustion.",
peer_addr, last.0
);
Some(*last.0)
} else {
None
}
})
.with_context(|| "virtual port pool is exhausted")?;
inner.port_by_peer_addr.insert(peer_addr, port);
inner.peer_addr_by_port.insert(port, peer_addr);
Ok(port)
}
/// Notify that the given virtual port has received or transmitted a UDP datagram.
pub async fn update_last_transmit(&self, port: u16) {
let mut inner = self.inner.write().await;
if let Some(peer) = inner.peer_addr_by_port.get(&port).copied() {
let mut pq: &mut DoublePriorityQueue<u16, Instant> = inner
.peer_port_usage
.entry(peer.ip())
.or_insert_with(Default::default);
pq.push(port, Instant::now());
}
let mut pq: &mut DoublePriorityQueue<u16, Instant> = &mut inner.port_usage;
pq.push(port, Instant::now());
}
pub async fn get_peer_addr(&self, port: u16) -> Option<SocketAddr> {
let inner = self.inner.read().await;
inner.peer_addr_by_port.get(&port).copied()
}
}
/// Non thread-safe inner logic for UDP port pool.
#[derive(Debug, Default)]
struct UdpPortPoolInner {
/// Remaining ports in the pool.
queue: VecDeque<u16>,
/// The port assigned by peer IP/port. This is used to lookup an existing virtual port
/// for an incoming UDP datagram.
port_by_peer_addr: HashMap<SocketAddr, u16>,
/// The socket address assigned to a peer IP/port. This is used to send a UDP datagram to
/// the real peer address, given the virtual port.
peer_addr_by_port: HashMap<u16, SocketAddr>,
/// Keeps an ordered map of the most recently used virtual ports by a peer (client) IP.
peer_port_usage: HashMap<IpAddr, DoublePriorityQueue<u16, Instant>>,
/// Keeps an ordered map of the most recently used virtual ports in general.
port_usage: DoublePriorityQueue<u16, Instant>,
}